f(z)=\frac{az+b}{cz+d},\quad \text{ただし \(ad-bc\ne0\).}
\]分母が0になるとき(\(z=-d/c\) のとき)は \(f(z)\) の値は複素数としては定まらない、のだが、値が複素数であることにこだわらなければここは \(\infty\) としておくのが都合がいい。逆に、\(z=\infty\) のときは、(\(z\to\infty\) の極限を考えれば分かるように)\(f(z)\) の値は \(a/c\) として定義できそうである。何がいいたいかと言うと、一次分数変換は、複素平面の関数というよりは、複素平面に「無限遠点」を加えたもの \(\Complex\cup\{\infty\}\) の関数をみるのが自然である。
複素平面に無限遠点を加えたもの \(\Complex\cup\{\infty\}\) は、球面と同一視できる(こうやって同一視したものをリーマン球面という)。球面上の点 \(P\) に複素平面の点 \(z\) をどう対応させるかというと、球の北極 \((0,0,1)\) から \(P\) に直線を引いて、その直線が複素平面と交わる点 \(z\) を対応させる。逆に、複素平面の点 \(z\) に対しては、\(z\) と北極 \((0,0,1)\) を結ぶ直線を引いて、それが球面と交わる(北極じゃない方の)点 \(P\) を対応させる。北極に対応する点は複素平面上にはないので、北極には無限遠点 \(\infty\) を対応させる。この対応を立体射影(stereographic projection)という。
続きを読む