この記事は Category Theory Advent Calendar 2018 7日目 かつ Haskell (その2) Advent Calendar 2018 7日目の記事です。
Category Theory Advent Calendar 2018の6日目はcorollary2525さんの「随伴は あらゆるところに 現れる」、8日目は空席、9日目はt_uemura669101さんの「トポスと高階論理」です。
Haskell (その2) Advent Calendar 2018の6日目は空席、8日目はtakoeight0821さんの「Type defaultingについての初級的な解説」です。
この記事はどういう記事か
圏論の方から来た人向け:
デカルト積やテンソル積の一般化である「モノイド積」の話と、「内部ホム」の話をします。文献によっては内部ホムはモノイド積の右随伴として導入されますが、ここではモノイド構造を仮定せずに内部ホムの定式化(閉圏)をします。
Haskellの方から来た人向け:
この記事ではHaskellにおけるアプリカティブ関手の使い方は解説しません。Haskellの方から来た読者はすでにアプリカティブ関手をある程度知っており、圏論的な話にチョット興味がある、と仮定します。
これを読めば、「モナドは自己関手の圏におけるモノイド対象だよ、何か問題でも?」と同じノリで「アプリカティブ関手はモノイド圏における強laxモノイド関手だよ、何か問題でも?」と言って他人を煙に巻くことができます。 続きを読む