最近、八元数を勉強しなければならないという電波を受信したので、とりあえず八元数のさわりだけ勉強する事にした。
複素数をさらに拡張したような数の体系として、八元数の前に四元数がある。四元数は3次元や4次元の回転(特殊直交行列; \(SO(3)\),\(SO(4)\))と深い関わりがあるので、以前から(高校生の頃に)勉強して知っていた。四元数の積はノルムを保つため、単位四元数の積によって3次元球面 \(S^3\) にリー群の構造が入る。
八元数も、積がノルムを保つように定義されている。しかし積が結合的ではないため、群にはならない。いまいち勉強するモチベーションが起こらなかったのもその辺に理由がある気がする。
今参照している本はJohn H. ConwayとDerek A. SmithのOn Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetryという本である。
複素数は1個(\(i\))、四元数は3個(\(i,j,k\))の直交する虚数単位があったが、八元数にはそれが7個ある。それを \(i_0,\dots,i_6\) で表す事にしよう。これに、「実数方向」の基底 \(1\) を加えると、八元数の \(\mathbf{R}\) 上線形空間としての基底 \(1,i_0,\dots,i_6\) ができる。
この基底を使うと、任意の八元数 \(x\) は次のように書ける:\[x=x_\infty+x_0i_0+x_1i_1+x_2i_2+x_3i_3+x_4i_4+x_5i_5+x_6i_6\]ただし、\(x_*\) は実数である。ノルムは普通の実数のノルム\[\left\lVert x\right\rVert^2=x_\infty^2+\sum_{n=0}^6 x_n^2\]とする。八元数の乗法をうまいこと定めてやると、2つの八元数 \(x\),\(y\) の積がノルムを保つ\[\left\lVert x\cdot y\right\rVert=\left\lVert x\right\rVert\cdot\left\lVert y\right\rVert\]ようにできる。どう定めるかというと、1以外の基底 \(i_n\) について\begin{align*}
i_n^2&=-1, \\
i_{n+1}i_{n+2}&=i_{n+4}=-i_{n+2}i_{n+1}, \\
i_{n+2}i_{n+4}&=i_{n+1}=-i_{n+4}i_{n+2}, \\
i_{n+4}i_{n+1}&=i_{n+2}=-i_{n+1}i_{n+4}
\end{align*}となるようにするらしい。ここで、\(n\) は整数を動き、添字は0から6に収まるように適宜 mod 7 で考える。
ということなのだが、この積の定義で本当にいいのか?本の記述を読み違えたとかいう可能性はないか?不安なので、積がノルムを保存することを確かめることにしよう。