ベクトル束のテンソル積には2種類ある。
一つ目。\(E\to M\), \(F\to N\) をそれぞれ \(K\)-ベクトル束とする。このとき、\[\bigsqcup_{(x,y)\in{M\times N}} {E_x\otimes F_y}\]は \(M\times N\) 上のベクトル束となる。底空間は直積 \(M\times N\) となる。
二つ目。\(E\to M\), \(F\to M\) をそれぞれ \(K\)-ベクトル束とする。一つ目の場合は底空間が異なる場合も許したが、ここでは底空間は同じものを考えることに注意しよう。このとき、\[\bigsqcup_{x\in M} {E_x\otimes F_x}\]は \(M\) 上のベクトル束となる。底空間は \(M\) のままである。
最初に読んだ本では二つ目のやつを \(E\otimes F\) で表していたが、今読んでいる本は一つ目のやつを \(E\otimes F\) と書いて、二つ目のやつは \(E\mathop{\hat{\otimes}}F\) で書いていた。これに気づかないで読み進めたためにひどい目にあった(ちゃんと注意して読めという話だが)。
個人的には、二つ目の方を \(\otimes\) で書くのがいいかなあと思うが(この分野の最近の傾向を知らないのでアレだが)、じゃあ一つ目のテンソル積を書く必要があるときはどうするの、という話だ。どうしよう。
読んでいる本に定義が書かれていないので悩んでいましたが参考になりました。ありがとうございます。