引き続きLunarMLの開発をやっています。
前回の記事:
最近書いた関連記事:
続きを読むプログラミング言語処理系が好きな人の集まりというコミュニティーがあります。ここは言語処理系を作っている人が多く集まっています。自作言語界隈とも言えます。そこでの話題について、色々と思うところがあったので、記事を書いてみます。
続きを読む私は現在、Standard ML処理系であるLunarMLを開発しています。しかし、Standard MLはほぼ進化の止まった言語です。一応Successor MLという取り組みがありますが、準拠を目指している処理系は多くはありません。
LunarMLが成功するためには、言語標準という枠に囚われずに「モダン」な機能を積極的に取り入れていくことが重要だと考えられます。つまり、拡張機能です。
Standard MLに足りない機能は何でしょうか。LunarMLにどんな拡張を入れれば、使いやすい言語になるでしょうか。
過去の記事ではすでにいくつか機能を挙げ、いくつかは実際に実装しました:
実装済みの拡張機能については以下に説明を書いています:
ここではもうちょっと色々アイディアを出してみます。
続きを読む古典的な(BigInt以前の)JavaScriptは数値型が倍精度浮動小数点数のみでした。5.2までのLuaも同様です。
このような言語で整数除算を行いたい場合は、浮動小数点演算を経由して行うことになります。例えばJavaScriptで32ビット整数の除算をやるならこんな感じです:
// x, yは整数値とする function Int_div(x, y) { return Math.floor(x / y); } function Int_quot(x, y) { return Math.trunc(x / y); } // 0除算やオーバーフローはここでは無視する
さて、浮動小数点演算と言えば誤差です。この「浮動小数点演算による整数除算のエミュレート」は誤差の影響を受けないのでしょうか?
続きを読むこの記事では、私が数年前から作っているStandard ML処理系「LunarML」の今年の進捗を振り返ります。
これまでの進捗報告記事は以下です:
ふと \(2^{53}+1\) が素数かどうか気になりました。
Linuxだと factor
コマンドで素因数分解できます。
$ factor $((2**53+1)) 9007199254740993: 3 107 28059810762433
macOSだとHomebrewやMacPortsでcoreutilsを入れる必要があります。
筆者のMacには factor
コマンドは入っていなかったので、最初はMaximaで確認しました:
$ maxima Maxima 5.45.1 https://maxima.sourceforge.io using Lisp SBCL 2.2.9 Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%i1) factor(2^53+1); (%o1) 3 107 28059810762433
というわけで、 \(2^{53}+1\) は\[2^{53}+1=3\times 107\times 28059810762433\]と素因数分解でき、素数ではありません。
今回調べたいのは \(2^{53}+1\) という形の数です。ちょっと頭を使えば、この数が3で割り切れることがわかります:\begin{align*}2^{53}+1&=2^{53}-(-1)^{53}\\&=(2-(-1))(2^{52}+\cdots+2^{52-i}\cdot(-1)^i+\cdots+(-1)^{52})\end{align*}と因数分解できます。
一般化すると、\(2^{2m+1}+1\)の形の整数はすべて3で割り切れることがわかります。つまり、\(m\neq 0\)で\(2^{2m+1}+1\)が3よりも大きくなる場合はこの形の数はすべて合成数です。
もっと一般に、\(2^n+1\)の形の整数が素数となるのは\(n=0\)または\(n=2^k\ (k\geq 0)\)の場合に限られます。
\(n=2^k(2m+1)\)とおくと、\begin{align*}2^n+1&=2^{2^k(2m+1)}+1\\&=\left(2^{2^k}\right)^{2m+1}+1\\&=\left(2^{2^k}\right)^{2m+1}-(-1)^{2m+1}\\&=\left(2^{2^k}-(-1)\right)\left(\left(2^{2^k}\right)^{2m}+\cdots+\left(2^{2^k}\right)^{2m-i}\cdot(-1)^i+\cdots+(-1)^{2m}\right)\\
&=\left(2^{2^k}+1\right)\left(\left(2^{2^k}-1\right)\left(2^{2^k}\right)^{2m-1}+\cdots+\left(2^{2^k}-1\right)\left(2^{2^k}\right)^{2(m-i)+1}+\cdots+\left(2^{2^k}-1\right)\cdot 2^{2^k}+1\right)\\
&=\left(2^{2^k}+1\right)\left(\sum_{i=0}^{m-1} \left(2^{2^k}-1\right)\left(2^{2^k}\right)^{2i+1}+1\right)\end{align*}と因数分解できます。
\(k\geq 0\)なので、\(2^{2^k}+1\geq 3\)であり、最初の因数は非自明です。そして、2番目の因数に登場する\(2^{2^k}-1\)は1以上で、\(m\geq 1\)ならば2番目の因数も非自明です。
よって、\(2^{2^k(2m+1)}+1\)の形の数が素数となるのは\(m=0\)の場合に限ることがわかりました。
\(2^{2^k}+1\)の形の数はフェルマー数と呼ばれています。\(k=0,1,2,3,4\)の場合はこれは素数となり、フェルマー素数と呼ばれています。
一部のプログラミング言語では、倍精度浮動小数点数型を唯一の数値型として提供しています。BigInt以前のJavaScriptや、5.2までのLuaなど。
こういう言語では、絶対値が\(2^{53}\)以下の整数は正確に表現できます。そして演算結果の絶対値がそれを超えると、丸めが発生して正しい答えが返ってきません。JavaScriptで試してみましょう:
$ node Welcome to Node.js v17.9.1. Type ".help" for more information. > 2**53 - 1 9007199254740991 > 2**53 9007199254740992 > 2**53 + 1 9007199254740992 > 2**53 + 2 9007199254740994 > 2**53 + 3 9007199254740996
2**53 + 1
を表現できておらず、「表現可能な最も近い値のうち、仮数部の末尾が偶数な方」が表示されています(最近接偶数丸め)。
では、演算結果が「正確に表現できる範囲」を超えたかどうかはどうやったらわかるでしょうか?まず、演算結果の絶対値が\(2^{53}+2\)以上であれば間違いなく超えています。
では、演算結果の絶対値が\(2^{53}\)以下なら結果は正確と言えるでしょうか?否ですね。2**53 + 1
の演算結果は\(2^{53}\)以下であるにも関わらず、不正確です。
一方、演算結果の絶対値が\(2^{53}-1\)以下であれば結果は正確であることが保証されます。この範囲、\([-(2^{53}-1),2^{53}-1]\)はJavaScript界隈ではsafe integerと呼ばれています。
さて、筆者が作っているStandard ML処理系、LunarMLでもsafe integerに相当する整数型を提供できると便利です。提供するとするとビット数は符号ビットも含めて54ビット、 Int54
みたいなものになります。
ですが、Standard MLの固定長整数は2の補数表現を仮定しており、表現できる範囲は\([-2^n,2^n-1]\)の形である必要があります。これとsafe integerを比べると、\(-2^{53}\)がはみ出ます。
なので、LunarMLで Int54
を提供するには、演算結果が\(-(2^{53}+1)\)の場合を何らかの方法で検出し、オーバーフロー例外を起こさなければなりません。この時、\(2^{53}+1\)が素数だったなら乗算の場合に演算結果が\(-(2^{53}+1)\)になる可能性を考慮しなくてよかったのに、現実は残酷でした、という話です。
浮動小数点数は指数部と仮数部の積で表される。
続きを読む何でもかんでも自分で一から作っていると人生が何回あっても足りない。なので、ありものをいかに活用していくかが重要となる。
この記事では、プログラミング言語を作る上で既存の資産を活用することについて考えてみたい。
続きを読む