月別アーカイブ: 2019年1月

最速のフィボナッチ数計算を考える

Qiitaにこういう記事を書いた:

Haskellでフィボナッチ数列 〜Haskellで非実用的なコードを書いて悦に入るのはやめろ〜

↑の記事ではメモ化しない計算法が遅いこと、Haskellには遅延評価の罠があって正格にすると早くなること、「n番目のフィボナッチ数」をピンポイントで計算する場合は(行列またはQ(√5)の)冪乗を使う方法が早いこと、一般項(ビネの公式)をその辺の浮動小数点数で計算するのは使い物にならないこと、などを述べた。

まあ、「Haskellでは fib 0 = 0; fib 1 = 1; fib n = fib (n-1) + fib (n-2) でフィボナッチ数が計算できます!」に対する注意喚起としてはこれで十分すぎる内容なのだが、「n番目のフィボナッチ数をピンポイントで計算する方法」についてはもっと深掘りできる。

この記事では、数学的な考察も交えて、「n番目のフィボナッチ数をピンポイントで計算する方法」をより高速化してみたい。(計算量としてはどっちみち O(log n) くらいなのだが、定数倍の部分で高速化する)

なお、記事タイトルには「最速の」と書いたが、この記事で紹介するアルゴリズムが最速だと主張するわけではない(筆者の知らない、もっと早いアルゴリズムが存在するかもしれない)。 続きを読む